Parmi les manifestations les plus mystérieuses de l'électricité atmosphérique est le phénomène de foudre en boule, ou Kugelblitz. Une boule lumineuse soit :
Les collisions avec un appareil ont provoqué des dommages vérifiés, indiquant que la foudre en boule n'est pas restreinte au niveau du sol.
La plupart des témoins indiquent que la foudre en boule est clairement visible le jour bien que non aussi brillante qu'un éclair ordinaire. Quelques 85 % des observateurs s'accordent sur le fait que la taille et la brillance de la boule restent globalement constantes tout au long de la période d'observation et qu'aucun changement n'intervient même jusqu'à sa disparition. Une minorité signale des changements de brillance et de couleur juste avant que la boule disparaissent. Les couleurs rouge, orange et jaune sont les plus courantes, mais la plupart des autres couleurs sont vues occasionnellement. Certains chercheurs pensent que les Kugelblitz bleu ou bleu-blanc sont associés à une plus grande énergie, bien qu'il n'y ait aucune base statistique pour une telle assertion. Les diamètres de Kugelblitz rapportés varient de 5 à 80 cm avec une moyenne d'environ 30 cm. Une étude répertorie 3 [complexions] de foudre en boule :
Le dernier type semble plus commun. Près de 1/3 des témoins détectent des mouvemenst internes ou une rotation de la boule elle-même, bien que cela puisse dépendre de la distance de l'observateur.
Une majorité de témoins rapportent le mouvement de la boule comme étant lent (environ 2 m/s) et horizontal, sans guidage apparente par le vent ou par le sol. 1 observateur sur 6 signale des vitesses dépassant 25 m/s. Plusieurs signalements indiquent bien un guidage par les lignes téléphoniques ou électriques et par des objets au sol. Une odeur de brimstone (soufre brûlant) est souvent rapportée par les observateurs proches, en particulier au moment de l'affaiblissement.
La durée moyenne de la foudre en boule en grossièrement de 4 s, avec 10 % signalant plus de 30 s. La détermination de la durée de vie est difficile car :
Dans tous les cas, un canal d'éclair ordinaire pouvant rester électriquement conducteur pendant seulement 0,1 s, une durée de 10 s est de 2 ordres de magnitude au-delà de ce qui est attendu.
Il n'y a pas longtemps, une discussion scientifique considérable s'ensuivi sur la question de savoir si la foudre en boule était un phénomène réel. Les scientifiques pensaient que la foudre en boule pouvait être :
Today most researchers believe that Kugelblitz is a genuine electrical effect. A recent survey indicates that ball lightning may be extremely commonplace, but that the observer must be relatively close to the ball to be able to see it. Kugelblitz is probably invisible or indistinguishable in daylight at distances greater than 40 meters, which would explain why it is incorrectly believed to be a rare phenomenon.
The median distance between an observer outdoors and ball lightning is 30 meters. Sometimes ball lightning floats through buildings. The median distance between indoor observers and ball lightning is only 3 meters. The reported distance of the observer seems to be closely correlated with the reported size of the ball. A more distant observer is
The second difficulty is somewhat mitigated since in most cases of ball lightning terrestrial landmarks can be used for reference in estimating distances and sizes. On the other hand, estimates of the distance and size of a luminous sphere seen against the sky can be quite inaccurate.
In one report, a red lightning ball the size of a large orange fell into a rain barrel which contained about 18 liters of water. The water boiled for a few minutes and was too hot to touch even after 20 minutes. Assuming
one needs roughly 8x106 joules of energy (equivalent to 2 kg of TNT). For a ball 10 cm in diameter (the size of a large orange), the energy density is then 5x109 joule/m3. But if all the air in a volume were singly-ionized, the energy density would be only 1.6x108 joule/m3. Both the energy content and the energy density of ball lightning as derived from the singular rain barrel observation seem incompatible with the non-explosive character of most Kugelblitz. Although many lightning balls emit a loud explosive (or implosive) noise upon decay, effects characteristic of the release of energies of the order of 2 kg of TNT have rarely been reported (understandably if the observer was within 3 meters) . Moreover, explosive or implosive decays have been noted indoors with no apparent heat or damage to nearby ceramic objects. Nevertheless, there are enough well-documented cases of extremely high energy Kugelblitz to make the water barrel report very believable. Probably there is a wide range of possible energies for a lightning ball, with the vast majority of Kugelblitz possessing energy densities less than that of singly-ionized air. The minimum possible energy of a lightning ball is that required to illumine a sphere about 25 cm in diameter with the brightness of a fluorescent lamp. With 10% efficiency, this means a source of 250 watts for 4 sec., or about 1000 joules of energy. We can only conclude with certainty that the energy of a lightning ball lies somewhere between 103 and 107 joules.
Theoretical efforts have focused on the energy estimate of the rain barrel observation. To maintain a fully-ionized, perhaps doubly-ionized mass of air requires either
Theories which attempt to bottle fully-ionized plasma by magnetic fields or magnetovortex rings are faced with severe stability problems. There is no known way to contain plasma in the atmosphere for as long as a few seconds. Moreover, a fully-ionized plasma ball would be hotter and probably less dense than the surrounding air, so that it would tend to rise rather than descend or move horizontally. Chemical combustion theories cannot explain the high energy content or the remarkable antics of the ball. Nuclear reactions would require an electric potential of at least 106 volts between the center and surface of the ball, and a mean free path for the ions as long as the potential gap. This situation seems unlikely, and faces similar problems of stability.
Theories which depend on an outside source of energy such as microwaves or concentrated d-c fields cannot explain how ball lightning can survive indoors.
If energies as high as several megajoules are not required, we can try other hypotheses. One suggestion is that the lightning ball is a miniature thundercloud of dust particles, with a very efficient charge separation process. Continuous low energy lightning flashes are illuminating the cloud. Another idea is that a small amount of hydrocarbon, less than that required for combustion, is suddenly subjected to strong electric fields. The hydrocarbons become ionized and form more complex hydrocarbon molecules which clump together. Eventually there is enough combustible material in the center to allow a burning core. If the concentration of hydrocarbon decreases, the ball disappears if the concentration increases, the ball ignites explosively. (This represents the swamp gas theory for ball lightning).
Much depends on a reliable energy estimate for the Kugelblitz. If the energy is as high as indicated by the water barrel report, we have a real dilemma. At present no mechanism has been proposed for Kugelblitz which can successfully explain all the different types of reports. Probably several completely different processes can produce luminescent spheres in the atmosphere.
We conclude this section with summaries of several eyewitness reports of Kugelblitz.
The first few cases concern aircraft.
He considers smaller luminous balls seen near his aircraft to be St. Elmo's fire. If Kugelblitz within clouds can be as large as is estimated by this pilot, then ground-based observations reflect only weak manifestations of the phenomenon.
The following case is indicative of high-energy ball lightning.
Cases like these are not unusual. Ball lightning has been known to cut wires and cables, to kill or burn animals and people, to set fire to beds and barns, to chase people, to explode in chimneys, and to ooze through keyholes and cracks in the floor. It has even been reported in the passenger compartment of a DC-3 aircraft. Moreover, lightning conductors are not always able to dissipate the energy of Kugelblitz. In St. Petersburg, Fla., during the summer of 1951 an elderly woman was found burned to death in an armchair near an open window. Above one meter, there were indications of intense heat - melted candles, cracked mirror, etc. A temperature of 1400°C would have been needed to produce such effects. But below one meter there was only one small burned spot on the rug and the melted plastic cover of an electric outlet. A fuse had blown, stopping a clock in the early morning hours. Since lightning is common near St. Petersburg, this case has all the marks of Kugelblitz.
Le , Diane de France, fille illégitime de Henri II, alors le Dauphin, épouse Francois de Montmorency. La nuit de leur mariage, une flamme oscillante entre dans leur chambre par la fenêtre, se déplace de coin en coin, puis finalement sur le lit nuptial, où il brûle les cheveux de Diane et and night attire. Elle ne leur fit aucun autre mal, mais on peut imaginer leur frayeur.